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Polarization-analysed resonant X-ray scattering study of chiral
smectic-C variant phases in freely-suspended liquid-crystal � lms

PETER MACH

Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA

1. Introduction with periodicity incommensurate with layer spacing in
SmC* . The experimental technique developed includesInspired by the discovery in 1989 [1] of the antiferro-
polarization analysis on the X-rays contributing to eachelectric chiral smectic C (SmC*A ) phase in the MHPOBC
of the resonant diVraction peaks associated with thecompound, studies during the past decade on many
superlattices of the chiral SmC variants. Calculations ofnewly synthesized liquid-crystal materials led to the
the tensorial structure factors appropriate for resonantidenti� cation of other SmC* variants, including, besides
X-ray scattering [9, 10] provided distinct predictionsthe previously known ferroelectric SmC*, the so-called
for how diVracted X-ray polarization states shouldSmC* and also the ferrielectric phases SmC*FI1 and
diVer depending on the model used to describe theSmC*FI2 . A complete series of such phases, in order
molecular structures. By making comparisons of theof decreasing temperature, could typically appear as
polarization-analysed resonant X-ray data collectedSmC* , SmC*, SmC*FI2 , SmC*FI1 , and SmC*A [2]. A proper
from 10OTBBB1M7 against the predictions of severalunderstanding of the mechanisms giving rise to such a
proposed molecular arrangements, it was possible torich sequence of antiferro- and ferri-electric ordering is
show that only a previously-proposed ‘clock’ model [11]of fundamental interest to condensed matter researchers.
could consistently describe the resonant X-ray peaksThis is particularly true since the molecules in these
observed in all the variant SmC* phases.phases lack the truly long-range positional order typically

expected for structures that involve contributions from
2. Structure of SmC* phases studied, and sample

antiferroelectric interactions. At the same time, a detailed
geometry

picture of the molecular arrangements characterizing the
In the smectic phases, liquid-crystal molecules organize

SmC* variants is also of technological importance, since
to give a layered centre-of-mass distribution. Within any

several phases, most notably SmC* and SmC*A , have
given layer, the positional order is purely liquid-like, but

already been exploited in electro-optic devices for their
the molecules have their long axes strongly oriented

rapid bistable or tristable switching behaviour.
along a director, n. The director is either along the layer

Numerous experimental probes were applied in the
normal z (SmA phase), or is inclined with respect to the

past to characterize the physical properties of the SmC*
layer normal by some tilt angle h (SmC phases). Within

variants; published reports included electro-optic [3, 4], the SmC phases, a projection (c) of the molecular director
conoscopy [3, 5], optical [6], ellipsometric [7], and n onto the xy layer plane can be considered. The angle
X-ray [8] studies. Unfortunately, these methods were between c and the x-axis in the jth layer is denoted as
generally unable to give direct pictures of the relevant Yj , and the change in Yj between adjacent layers j and
molecular orderings, even in the case of conventional ( j+1) as DYj ; a schematic picture of this situation is
X-ray scattering, normally a very powerful structural given in � gure 1. If the liquid crystal molecules are chiral,
tool. Our research group chose to apply the technique an overall helical rotation of c develops with a pitch,
of resonant X-ray scattering in order to overcome this Po , ~1 mm. It is in the detailed progression of Yj and
diYculty, and to obtain detailed information about DYj from layer to layer where proposed models of the
the intriguing diVerences between the ferro-, ferri-, and molecular arrangements of the SmC* variants diVer.
anti-ferroelectric liquid-crystal structures. The collected For the resonant scattering X-ray work, the liquid
resonant X-ray data revealed distinct structural period- crystal compounds were studied in the form of thick,
icities associated with the various chiral SmC phases, as free-standing � lms, with the X-rays incident in a Bragg
exhibited by one thiobenzoate liquid-crystal enantiomer geometry. In contrast to typical bulk sample cell pre-
compound (10OTBBB1M7) and the SmCA phase of its parations, a free-standing � lm provides a well-de� ned,
racemic counterpart. Our results showed the existence uniform orientation of the smectic layers without requiring
of two-, three-, and four-layer superlattice periods in the any extra aligning surface that would attenuate the

X-ray intensity.SmC*A , SmC*FI1 , and SmC*FI2 phases, respectively, along
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2 P. Mach

beam. Because DYj arrangements of various SmC* sub-
phases are distinct, under this circumstance the resonant
X-ray diVraction is capable of revealing the structural
diVerences.

3. Experimental description
The original resonant scattering X-ray studies were

performed at beamline X-19A of the National Synchrotron
Light Source (NSLS) at Brookhaven National Laboratory.
The central component of the overall apparatus was a
heated sample chamber; the liquid crystals, spread inside
as approx. 1-cm diameter freely-suspended � lms, could
thus be held at appropriate elevated temperatures .
A visual estimation of � lm thickness, as well as an
independent monitor of the optical textures distin-
guishing the various phases, was provided by microscope/

CCD camera observation under polarized light. The
X-ray elements also included an assembly upstream of
the sample chamber which allowed retractable insertion
of bulk powder sample into the X-ray beam, with emitted
� uorescent intensity collected as a function of incident
X-ray energy. This allowed us to precisely determine the
appropriate sulphur resonant K edge (2475 eV) for the
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materials studied [12].
Figure 1. (a) Schematic diagram illustrating the orientation

The downstream side of the X-ray � ight path
of molecules in neighbouring SmC* layers. The tilt angle

incorporated the polarimeter assembly. Rotating a pyro-h in layers j and ( j+1) is the same, while azimuthal
lytic graphite crystal about the so-called xa axis, de� nedangles Yj and Yj+1 diVer. z, n, and c are coplanar.

(b) The molecular structure of 10OTBBB1M7, including by the direction of the beam incident on this crystal,
the sulphur atom with K absorption edge at 2475 eV. while at the same time keeping the incidence angle,

ha , � xed to the Bragg angle, modulates the intensity
diVracted from the crystal in a manner depending onThe primary material studied in the original polarized

X-ray scattering experiment was 10OTBBB1M7, whose the incident X-rays’ polarization. In the ideal case of a
45° Bragg angle, X-rays polarized linearly perpendicularmolecular structure is also given in � gure 1. The bulk

10OTBBB1M7 enantiomer shows the following phase to the crystal’s diVraction plane will be completely
diVracted, while those polarized within the diVractionsequence: Isotropic (153°C) SmA (124°C) SmC* (120°C)

SmC* (119°C) SmC*FI2 (114°C) SmC*FI1 (112°C) SmC*A plane will not diVract at all. With a Bragg angle of
48.3° at 2.475 KeV, pyrolytic graphite provided excellent(110°C) crystal. A critical feature of 10OTBBB1M7 for

the purposes of the experiment is the sulphur atom polarization discrimination for our measurements. In
practice, when analysed by our polarimeter assembly,contained within the centre portion of the molecule.

Conventional X-ray diVraction along the Qz reciprocal linearly s-polarized x-rays (s de� ned here as a unit
vector in the plane of the synchrotron ring) give aspace direction probes the in-plane-averaged electron

density. All of the SmC* variants give Qz peaks only at characteristic sin2 (xa ) pro� le 90 degrees oVset in xa
coordinate from the p-polarized case. This ability tointegral multiples of Qo=2p/d, where d is the smectic

layer spacing. Therefore, the z-projected electron density distinguish s versus p polarization was a critical feature
of our experiment. For example, the tensorial structureis identical for all of the variants, and they diVer from

one another only by symmetry elements such as glide factor calculations carried out based upon the undistorted
clock model for the SmC* variants [10] speci� callyplanes or screw axes along z. By working with x-rays

whose energy is at the sulphur’s K absorption edge, the predicted diVraction of incident s into outgoing p polar-
ization for certain orders of satellite re� ections fromstructure factor becomes a tensor instead of the con-

ventional scalar [9, 10]. The scattered x-ray intensity the structural superlattices. The combination of highly
s-polarized incident X-ray radiation available at thenow varies depending on the molecular orientation,

since the oV-diagonal tensor components depend on synchrotron beamline, together with diVracted X-ray
polarization analysis, enabled us to conclusively test thethe orientation of the bonds around the sulphur atom

with respect to the polarization of the incident X-ray model’s predictions.
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3X-ray scattering in f reely-suspended liquid-crystal � lms

To complete the description of the experimental The SmC* phase is characterized by a superlattice of
incommensurate pitch, which varied between 5 and 8design, it should be noted that all components of our

experiment were connected into a sealed � ight path layers with increasing temperature within the SmC*
phase window. In all cases, the superlattice signatureseparated from beamline vacuum by an 8-mm beryllium

window. During the measurements, the � ight path was peaks disappear when the scans are repeated at X-ray
energies oV of resonance by more then 20 eV, leavingkept � ushed with helium gas in order to avoid the

prohibitive reduction in X-ray intensity which would only the conventional � rst and second order layer spacing
features at Qz=Qo and 2Qo .otherwise result from air absorption at such a low X-ray

energy. The � lm oven, and all of the components com- These features are well-interpreted in the context of
calculations by Levelut and Pansu [10], who found thatprising the ‘detection arm’ of the assembly, were mounted

on the theta and two-theta circles, respectively, of a a helical structure of pitch=nd leads to resonant satellite
peaks atHuber two-circle goniometer. An overall schematic view

of our set-up, including the X-ray polarization analysis,
Qz /Qo=l +m[(1/n)+e],

is given in � gure 2.
where e=d/Po ; l =0, 1, 2,… ; and m= 2,  1, 0, 1, 2,
where the � ve independent m values are a consequence4. Data and discussion

Figure 3 gives a composite plot of the resonant of the � ve independent tensor components in the scat-
tering factor. The corresponding (l ,m) assignments toscattering features observed in the SmC* variant phases

of the 10OTBBB1M7 material [13]. The peaks at non- the superlattice peaks have been indicated in � gure 3.
Levelut and Pansu showed that intriguing polarizationinteger Qz /Qo indicate the presence of superlattices in

the molecular Yj and DYj progressions. Half-order peaks eVects should be seen for X-rays diVracted from such
superlattice structures, depending on the speci� c modelin the SmC*A and SmCA phases indicate a two-layer

superlattice, although the superimposed, approx. 0.5 mm used for the Yj and DYj progressions. For example,
previously proposed ‘Ising-like’ models [14] restrictedoptical pitch in the chiral case leads to a discernible

splitting of the resonant half-order features. The one-third Yj to a plane, and therefore DYj to only values of 0
or p. On the other hand, the so-called ‘clock’ modeland one-quarter order peaks indicate three- and four-

layer superlattices in SmC*FI1 and SmC*FI2 , respectively. does not place restrictions on Yj , and in an undistorted
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Figure 2. Schematic diagram of components in the polarized resonant X-ray scattering experiment.
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Figure 4. Composite plot of X-ray intensity collected as functionFigure 3. Composite plot of X-ray data for the SmC* variant
phases observed in freely-suspended � lms of 10OTBBB1M7. of polarimeter analyser crystal angle xa . Plot (a) shows

characteristic sin2(xa) shape for the s-polarized direct beam-Indicated on the plots are the deduced superlattice periods
n corresponding to each of the phases, the subsequently line X-rays. Plot (b) gives data for the p-polarized m= 1

resonant satellite peak (Qz/Qo=1.75) in the SmC*FI2 phasedetermined peak polarization states, and also the resonant
peak satellite indices (l ,m) in the context of the clock of 10OTBBB1M7. Plot (c) indicates s-polarization of the

m=2 resonant satellite (Qz/Qo=1.5) in 10OTBBB1M7’smodel.
SmC*FI2 phase.

5. Recent developments in SmC* variant researchcase predicts a DYj=2p/n. One very powerful case for
discriminating between the proposed models occurs with This article has summarized the experimental tech-

nique and data originally collected in a 1999 University ofthe satellite peaks of the SmC*FI2 (n=4) phase. Two
varieties of Ising-like models, so-called E-Ising and Minnesota PhD dissertation, and subsequently recognized

with the Glenn H. Brown Award at the 2000 InternationalT-Ising [2, 14], had been proposed to account for the
SmC* variant progressions under changing external Liquid Crystal Conference held in Sendai, Japan. The

resonant scattering work provided the � rst direct structuralelectric � eld or temperature, respectively. While each
yielding diVerent DYj progressions for n=4, both models evidence for superlattice periodicities characterizing a

full sequence of antiferro-, ferri-, and ferroelectric chiralpredicted p-polarized m=±1 resonant peaks from
s-polarized incident X-rays; however, the satellite feature SmC phases. In fact, polarization-analysed resonant

X-ray scattering should prove to be a powerful, generalat m=±2 for T-Ising should be non-resonant, and
therefore remain present even for X-ray energy tuned tool for revealing orientational structure features that

are otherwise undetectable in soft condensed matter byaway from 2475 eV. The resonant nature of the m=±2
feature we observed contradicted this prediction. Further- conventional methods. The resonant scattering tech-

nique gives us the ability to resolve orientational ordermore, under the E-Ising model, the m=±2 resonant
peaks should also be p-polarized. In a clock model, periodicities from the molecular layer to optical pitch

length scales, or in other words, from angstroms tothe m=±2 peaks should preserve s polarization.
Figure 4 shows that our measurements on the m=±2 microns.

Within the past 2 years, much additional progress hasresonant feature of SmC*FI2 are consistent with a clock
model, and therefore ruled out perfect Ising-like models been made in obtaining further information about the

chiral SmC* variant phases and their molecular arrange-as a description of the complete SmC* variant series
[15]. The characteristic sin2 (xa ) pro� le of the incident ments. For example, the evolution of incommensurate

superlattice periodicity, from between 5 to 8 moleculars-polarized beam is also given in Fig. 4, to provide a
reference for the adopted coordinate system. layers, as a function of temperature within the SmC*
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original resonant scattering results, new high-resolution Takezoe, H., and Fukuda, A., 1990, Jpn. J. Appl. Phys.,
ellipsometry measurements have been conducted on free- 29, 131.
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[9] Dmitrienko, V. E., 1983, Acta Cryst., A39, 29.of such measurements, a critical need arose to look for
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